Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Bulletin of Engineering Geology and the Environment ; 81(8), 2022.
Article in English | CAB Abstracts | ID: covidwho-20235953

ABSTRACT

The rapid response to the COVID-19 pandemic has resulted in increased municipal waste in the form of used face masks (FMs), which pose a global threat to the environment. To mitigate this, the study explores the applicability of shredded FMs as alternative reinforcing material in sands. Laboratory-grade Ottawa sand and naturally collected sea sand are adopted as the base sands for testing. The primary physical properties of the base materials and the FMs are first examined, and the soil particles are imaged via scanning electron microscopy. Thirty consolidated undrained (CU) triaxial compression tests were conducted to evaluate the effects of the weight fraction of FM, FM length, and the initial effective mean stress on the undrained shear strength parameters of the sands. The experimental results proved that FM inclusion can lead to a substantial improvement in the undrained shear strength of the sands;however, such improvement was sensitive to the initial effective mean stress, with higher undrained shear strength gains associated with lower initial effective mean stress. For a given FM content, the critical state ratio and angle of friction at the critical state increased with the FM length. Finally, the results revealed that FM-reinforced sands exhibit dilative and strain-hardening behaviors.

2.
Canadian Journal of Plant Pathology ; 43(Suppl. 1):S179-S182, 2021.
Article in English | CAB Abstracts | ID: covidwho-2263295

ABSTRACT

Various kinds of field crops growing on two commercial farms in the Whitehorse area of the southern Yukon Territory were surveyed for diseases in summer 2020 by staff of the Agriculture Branch of the Government of Yukon. They included barley, wheat, canola, beets, broccoli, cabbage, carrots, potatoes and turnips. Fields were visited one or more times during July and August. The incidence and severity of diseases were visually assessed on a crop-by-crop basis and samples were collected for laboratory analysis of the pathogens present, if any. Both infectious and non-infectious diseases were present on most crops. The infectious diseases were caused by various species of plant pathogenic bacteria and fungi that were common on these crops growing in other areas of Canada. INTRODUCTION AND METHODS: The 2020 field crop disease survey is believed to be the first organized study of its kind on agricultural crops in the Territory. In his book, "An Annotated Index of Plant Diseases in Canada . . . ", I.L. Conners lists over 300 records of plant diseases on trees, shrubs, herbs and grasses in the Yukon that were published by individuals who were surveying forests and native vegetation mainly for federal government departments, universities and other agencies (Conners 1967). The objectives of the 2020 survey were: (1) to determine the kinds and levels of diseases on selected Yukon crops, (2) to identify the major pathogen species attacking Yukon crops, and (3) to use the results to plan future surveillance activities aimed at helping producers to improve their current disease management programs. All of the fields included in the 2020 survey were situated on two commercial farms, which were designated as Farm #1 and #2, in the Whitehorse area in the southern Yukon (Fig. 1). The crops surveyed included cereals (barley and wheat), oilseeds (canola) and vegetables (beets, broccoli, cabbage, carrots, potatoes and turnips). Fields were visited one or more times in the mid- to late growing season (July/August) at a time when damage from diseases was most noticeable. Symptoms were visually assessed on a crop-by-crop basis by determining their incidence and severity. Incidence was represented by the percentage of plants, leaves, heads, kernels, etc., damaged in the target crop, while severity was estimated to be the proportion of the leaf, fruit, head, root/canopy area, etc., affected by a specific disease as follows: Proportion of the canopy affected based on a 0-4 rating scale, where: 0 = no disease symptoms, 1 = 1-10% of the crop canopy showing symptoms;2 = 11-25% showing symptoms, 3 = 26- 50% showing symptoms, and 4 = > 50% showing symptoms. Photographs of affected plants were taken and sent to plant pathologists across Western Canada for their opinions on causation. Where possible, representative samples of plants with disease symptoms were packaged and sent to the Alberta Plant Health Lab (APHL) in Edmonton, AB for diagnostic analyses. Background information, such as the general cultural practices and cropping history, was obtained from the producers wherever possible. GPS coordinates were obtained for each field to enable future mapping Cereals: Individual fields of barley (11 ha) and wheat (30 ha) located at Farm #1 were surveyed. The barley was a two-row forage cultivar 'CDC Maverick', while the wheat was an unspecified cultivar of Canada Prairie Spring (CPS) Wheat. Plant samples were taken along a W-shaped transect for a total of five sampling points for the barley field (< 20 ha) and ten sampling points for the wheat field (> 20 ha). The first visit, which occurred on July 30, involved visual inspection and destructive sampling wherein plants were collected and removed from the field for a detailed disease assessment at a lab space in Whitehorse. There, the roots were rinsed off and the plants were examined for disease symptoms. The second visit to these fields, which occurred on August 27, only involved visual examination of the standing crop. Oilseeds: A single 40 ha field of Polish canola (cv. 'Synergy') was examined o

3.
BR Wells Rice Research Studies Arkansas Agricultural Experiment Station, University of Arkansas System ; 685:264-268, 2022.
Article in English | CAB Abstracts | ID: covidwho-2170127

ABSTRACT

Seeking to fine-tune nitrogen (N) application, increase economic returns, and decrease environmental N loss, some Arkansas rice (Oryza sativa L.) producers are turning away from blanket N recommendations based on soil texture and cultivar and using the Nitrogen Soil Test for Rice (N-STaR) to determine their field-specific N rates. In 2010, Roberts et al. correlated years of direct steam distillation (DSD) results obtained from 0- to 18-in. soil samples to plot-scale N response trials across the state to develop a field-specific, soil-based N test for Arkansas rice. After extensive small-plot and field-scale validation, N-STaR is available to Arkansas farmers for both silt loam and clay soils. Samples submitted to the N-STaR Soil Testing Lab in 2021 were summarized by county and soil texture, totaled 21 fields across 9 Arkansas counties, and were from 6 clay and 15 silt loam fields. Depressed sample submissions were again observed likely due to another wet spring and lingering effects of the COVID-19 pandemic. The N-STaR N-rate recommendations for samples were compared to the producer's estimated N rate, the 2021 Recommended Nitrogen Rates and Distribution for Rice Cultivars in Arkansas, and the standard Arkansas N-rate recommendation of 150 lb N/ac for silt loam soils and 180 lb N/ac for clay soils. Each comparison was divided into 3 categories based on a decrease in recommendation, no change in recommended N rate, or an increase in the N rate recommendation. In all 3 comparisons, county, but not soil texture, was a significant factor (P < 0.04) in observed decreases in N recommendation strategies demonstrating variations in the soil's ability to supply N across the state. Further stressing the potential N cost savings opportunities, reductions greater than 30 lb N/ac were recommended by N-STaR in 71%, 50%, and 74% of fields in the standard, estimated, and cultivar comparisons, respectively.

4.
Agro Science ; 20(4):59-64, 2021.
Article in English | CAB Abstracts | ID: covidwho-1573740

ABSTRACT

Soil is the most complex part of land as its contents are made of all the other key components of land namely geology (soil minerals), hydrology (soil water), atmosphere (soil air), and organisms including man (soil organic matter including dead bodies). This is why the functions of the soil are not only numerous but also indispensable. Among the functions, the role of the soil in sustaining human life remains unimaginable. Over 3.8 million people have been killed by COVID-19 by June 15, 2021 in the world and more are still dying. Some unrecorded millions died of hunger as a result of the lockdown during the peak of COVID-19 pandemic. Where are these dead bodies and materials associated with those that died of COVID-19? Where did all the food palliatives (rice, maize, wheat, yam, gari, vegetable oil, etc.) come from? The human body is composed of approximately 64% water, 20% protein, 10% fat, 1% carbohydrate, 5% minerals. When decomposed these various components result to various gaseous compounds and residues that are harmful to human life and environment. When dead bodies are buried human health and environment are saved. The dead bodies, the wastes and their contents are in the soil providing "palliatives" to soil microorganisms while protecting the remaining human population and the environment. Cremation products also end up in the soil. The soil also provided and still provides the food palliatives. Thus, the soil is our number one saviour against COVID-19 pandemic and can be adjudged as the saviour of the human race to date. Coincidentally man was made from the soil and must return to the soil. Key words: soil functions, burial, cremation, palliatives, COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL